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Torque and energy considerations for a magnet in a magnetic 
liquid 
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Applied Mechanics, The Norwegian Inslitute of Technology, N-7034 Trondheim, Norway 

Received 22 May 1995 

Abslraact. The calculauon of the torque T an a permanent ellipsoidal magnet immersed in a 
magnetic liquid is more delicate than one might be inclined to expect. This problem, for instance, 
has a bearing on fundamental discussions carried out in the past about the choice between 
different formulotioor of electromagnetic theory. The present paper analyses the calculation of 
T anew. emphasizing the relation to, and the explanation of. the imponmt experiment carded 
out by Whitwonh and Stopes-Roe in 1971. The outcome of the experiment is explained in 
r e m  of stmdxd magnetastatics. based upon use of the scalar potential ). The relation to the 
sa-dled KennellySommerfeld eontmveny is commented upon. The physical interpretation of 
the situation is elucidated by -ing out in deml sn examination of the total energy balance 
in the special case of spherical mgnet  geometry. 

1. Introduction 

The purpose of the present paper is to discuss some fundamental questions related to the 
calculation of the torque on a solid ellipsoidal permanent magnet immersed in a magnetic 
liquid when it is acted upon by a transverse external magnetic field. The problem is more 
delicate than one might be inclined to think beforehand. It was discussed in a lively manner 
in the literature some years ago; we shall not enter into a historical discussion here but 
shall be primarily interested in the outcome of the important experiment of Whitworth and 
Stopes-Roe (WS) [l]. In this experiment the torque on a long thin permanent magnet 
immersed in different magnetic liquids was measured. The conclusion made by WS was at 
first sight counter-intuitive: the torque was claimed to depend on the far-distance magnetic 
field HO in the liquid, rather than on the magnetic induction BO = p,pCHo3 pe being the 
relative permeability of the liquid. (One reason why the WS conclusion may appear strange 
i s  that it is the magnetic induction which is generally known to be the basic field quantity 
since it is the average of the microscopic field over physically infinitesimal volumes,) 
The interpretation of the WS experiment was reconsidered by Lowes [Z] and Page [3]; 
in particular the extensive paper by Lowes is important i n  our context. However, by 
making a data search we have not been able to find more recent papers referring to the WS 
experiment, except for the review paper of Byrne [4]. 

In the following we shall show how the outcome of the WS experiment is explainable 
using the standard theory of magnetostatics, and we shall focus attention on the role played 
by the fictitious magnetic surface charge densities. Also, we shall show how it is physically 
instructive to take the energy balance of the magnetic field into consideration. 

Let us discuss the situation quantitatively, referring to figure 1. The semiaxes of the 
ellipsoidal magnet are a, b, c, where it is assumed that a 2 b > c .  When the surrounding 
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I 
A 

Figure 1. Sketch of the horizontally placed magnet in the Vmsverx field. The direction of 
mnRIl presupposes that > I .  

liquid is present, the magnet possesses a permanent magnetic moment mperm = mpermer, 
directed along the horizontal x axis. The value of mprrm (dependent on p r )  follows 
from the boundary conditions at the magnet surface (see equation (27) below). What is 
known initially is the uniform permanent magnetization MO = Moer when the magnet is 
surrounded by a vacuum; in that case, the magnetic moment is 

where V = is the magnet volume. The material in the magnet is taken to be 
homogeneous and isotropic, and it is moreover taken to possess no induced magnetization 
properties. That is. the relative ‘reversible’ permeability (in contrast with [2]) is put equal 
to unity. 

Assume now that there is a transverse magnetic field present, directed along the z axis. 
At large distances from the magnet the induction is constant, equal to BO = &e,. We shall 
assume that Bo is produced by external current coils in vacuum (air) above the free surface 
(line A-A in figure I), in accordance with the set-up in the WS experiment. The free 
surface is situated so far from the magnet that no boundary effects from the surface need 
to be taken into account. We assume that the magnet is kept at rest all the time, and that 
different magnetic liquids are successively filled into the container. When the current in the 
coils is always the same, it follows from the continuity of the normal induction across the 
surface A-A that the far-distant induction BO within the liquid is  also the same, irrespective 
of the value of fie in the liquid. 

Let T denote the torque on the magnet. From simple theory pertaining to the case of 
linear soft (non-permanent) magnetic media we know that the torque density equals M x B ,  
where M and B an local quantities. In the present case it is evident that T must be equal 
to mo x Bo times some &,-dependent factor. The core of the problem is to determine the 
factor. The merit of the WS experiment was to show that. in the case of a needle-shaped 
magnet, the torque was proportional to the field Ho: 

This meant that, upon interchange of magnetic liquid, T varied inversely proportional to 
w e .  
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Both [ I J  and [2] have a bearing on the so-called Kennelly and Sommerfeld formulations 
of electromagnetism. Let us therefore briefly review this point. We start from the relation 

(3) 

which implies that J = poM. Here M is the tolal magnetization, defined as the sum of 
the permanent and the passive contributions. The quantities J and M are associated with 
the Kennelly and the Sommerfeld formulations, respectively. It becomes most natural to 
define the respective total moments of the magnet as volume integrals: 

B = poH + J = &o(H + M )  

j = / J d V  m = / M d V  (4) 

implying that 

j = pom. (5) 

Now consider a long thin magnet immersed in a magnetic liquid: according to Kennelly 
the torque is predicted to be 

T = j o  x Ho (Kennelly) (6) 

where j o  is defined as j o  = J J o d V  = porno, mo meaning the same permanent magnetic 
moment as in equation (I) .  The torque prediction according to Sommerfeld is 

T = mo x Bo (Sommerfeld). (7) 

The physical predictions of (6) and (7) are thus different. Equation (6) is seen to be in 
agreement with the outcome of the WS experiment (see equation (2)). For this reason, WS 
claimed their experiment to support the Kennelly formulation only. 

The interpretation given by Lowes was, however, different; he claimed that both 
formulations agree with the WS experiment. In his analysis, two effective magnetic moments 
j ,  and m, were introduced, defined by the formula 

for the scalar potential @, and by the formula 

polr.m, x + A =  
4nr2 

for the vector potential A,  respectively. The reason why he claimed the two formulations 
to be equivalent was that the torque could be expressed in either of the following two ways: 

T = j ,  x Ho =me x Bo. (10) 

Here the first equation corresponds to the Kennelly formulation; the second equation 
corresponds to the Sommerfeld formulation. 

This point is, however. surprising; equation (10) implies that 

3, = E*owem, (11 )  



8068 I Brevik 

which is in conflict with the general equation (5 )  above. One may wonder whether Lowes’ 
formal definitions of j .  and m, in reality tend to obscure the physical significance of the 
WS experiment. ?his was one of the reasons why we found it desirable to analyse the WS 
experiment anew. We shall in the following go through the calculation of T in some detail 
and also supply the treatment by an analysis of the energy balance, 

As is known, magnetostatic theory can equally well be formulated in terms of the vector 
potential A produced by volume and surface currents as in terms of the scalar potential q5 
produced by effective volume and surface magnetic charges. We follow the latter approach 
here. When no volume charges are present, the effective surface charge density U M  is [5] 

OM = n. M - - n -  Af+. (12) 

Here n is the outward normal, and the superscripts - and + refer to the inner and outer 
magnet surfaces, respectively. The magnetic moment is the integral 

m = 1 rcM d S  (13) 

taken over the surface. We note that there are in principle four different contributions to 
m; the moment can arise from effective magnetic charges residing on firstly the inner or 
secondly the outer surface, associated with thirdly the permanent or fourthly the passive 
parts of the total magnetization M .  

2. Permanent magnet: no external field 

We refer to figure 1, put the external field BO equal to zero and recall that the magnetization 
MO per definition relaxes to a vacuum region around the magnet. When a > b > c it  is 
convenient to introduce ellipsoidal coordinates t ,  0, C ,  given as the three roots f o r s  of the 
equation 12,561 

- 1. - +-+-- 
a Z + s  bZ+s  c 2 + s  

X 2  YZ ZZ 

The surface of the magnet is at $ = 0. We also define the quantity 

where R, = [(s + a2)(s  + bz)(s  + c~)]’/~, similar definitions holding for the other axes b 
and c. The demagnetizing factors are N, = f i (0)  with i = a, b, c, satisfying the equation 

To find the distribution of fields on the inside and on the outside of the magnet surface, 
one has to take into account the boundary conditions. From Lowes’ [2] paper, and further 
references therein, we have on the inside (xr  = p r  - 1 is the magnetic susceptibility) 

Na + Nb + N ,  = 1. 
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On the outside, Ht = -V#+, where 

The external magnetic induction is B+ = pop,N+, and the external magnetization is 
M +  = xeHf. It is also useful to note that, on the outer surface, 

(20) 

This is a result that can be found by using (15) and (19), the partial derivatives of .$ at the 

-N.Mo + ( M O .  n)n H'(5 = 0) = 
w e  - No X C  

- 
magnet surface given by 

which follow from (14) and the general equation 

rlt x z  y 2  22  +-+ -  a2b2c2 a4 b4 c4 
_ _ = _  

and finally by observing that the components of n at the surface are 
xbcla 

[ :: 1 = i 7  [::;:}. (23)  

A remarkable property of the above formalism is that the inside magnetization M -  depends 
also on the outside permeability pe. Let us calculate the effective surface charge densities; 
on the inside, 

and on the outside 

+ - - n .  M +  = - (MO . n), GM - 
f i e  - N u ~ r  

The total surface charge density is thus 

The geometric form of the ellipsoid is so far assumed to be arbitrary (recall, however, that 
our conventions when using ellipsoidal coordinates are that the inequalities a z b > c 
are fulfilled). Now proceeding to calculate the magnetic moment m using (13). we shall 
for simplifying reasons assume that a 2 b = c, so that the ellipsoid degenerates into a 
prolate spheroid. Because of symmetry, only the longitudinal component of m survives. 
We can now avoid ellipsoidal coordinates. In terms of Cai-tesian coordinates we have simply 
n, dS = 2rr(c/a)zx dx and we get, upon insertion of (%), 

(we supply an extra index perm to emphasize that it is the moment of the permanent magnet). 
Note that this result is a consequence of the surface charges on the inside surface, as well 
as on the outside surface, of the magnet. 

In the special case when the spheroid degenerates into a long thin rod, we have N, -+ 0, 
Na = Nc + 1. Then (27) yields 

showing the significance of the outside medium even i n  this simple case. 
mperm =  mol^ ( 2 8 )  
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3. Passive magnet in transverse field 

We refer again to figure I ,  put MO = 0 and assume the transverse external field Bo = Boe, 
to be present. The solution of thc ficld problem can everywhere be written as H = -V#, 
where on the inside 

and on the outside 

Again, we have made use of results derived in [2]. We write down the expressions for the 
internal field given by 

H - = H o  " 
pLr - N ~ x .  

and for the external field at the magnet surface given by 

where in the last derivation we made use of (21) and (23). Equation (32) can be expressed 
in terms of the x ,  )'. z coordinates using equation (22). Equation (32) is analogous to 
equation (20) holding for the permanent magnet. 

Let us calculate the internal and external magnetic surface charge densities. As 
u i  = n . M -  and a i  = -n . M +  i n  general, and as M -  = 0 (no sort internal 
magnetization) and M+ = xcHt in the present case, we obtain using (32) and (23) 

U; = o  (33) 

The total surface charge density for the passive magnet becomes thus 

Now considering the passive magnetic moment m,,o.s., we assume, as in the previous 
section, that the magnet takes the simple form of a prolate spheroid with b = c. Define the 
distance p by p z  = y2 + z2, and let 'p be the polar angle in the y-z plane. The surface 
element on the magnet surface becomes 

dS=pd-dqdx=pdI t ( x c 2 / p a 2 ) 2 d q d x  (36) 

and the component ni of the outward normal n is given by (23) and (22). It follows that 
n, dS = zd'pdx. Insertion of (35) into the basic formula (13) then yields m, = my =, 0, 
whereas the vertical component m, is non-vanishing. Altogether we obtain for the passive 
magnet 

where V = (4n/3)ac2 is the volume. The limiting case of a long thin horizontal rod 
( N ,  + $) may be taken in the same way as in the previous section (see equation (28)). 
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4. The torque 

Place an arbitrary fictitious surface S outside the surface of the ellipsoidal magnet. The 
torque on the magnet is given as the surface integral 

T = popLr r x [H(H -n)  - $ H 2 n ] d S  (38) s 
where H is the total field on S and n the outward normal. The reason why the position 
of S can be taken to be arbitrary is that the magnetic force density in the fluid is equal to 
zero. It is mathematically simplifying to exploit this fact and to choose S to be a spherical 
surface, far from the origin, so that n + F. At large distances ( E  >-> U ,  b ,  c) we have 
RI E t3/', and thus 

V 
4n F a ( t )  F6('$) 2 Fc(6)  2: (39) 

according to (15). Also, r z  2: 

From the structure of (38) it is clear that one gets a non-vanishing contribution to the 
torque only when HO interacts with fields of order F3. These fields are precisely the dipole 
fields. There are two fields of this kind: one is due to the permanent magnetic moment 
mperm in (27); the other is due to the induced magnetic moment mperm in (37). Altogether, 
the total potential at large distances is 

according to (14). 

and the total field is 

3 ( m  ' r r - m  A ) A  

4nr3 
H + = H ~ +  

where m is the total magnetic moment: 

(41) 

The last term in (38) does not contribute, and we may write the torque as an integral over 
solid angles: 

where dS = r2 d.52. Here we made use of (41). and retained only the non-vanishing r -  
independent terms. It is seen that the passive magnetic moment (the last term in (42)) does 
not contribute to the torque. This behaviour could also have been expected beforehand, 
because of symmetry. The only remaining contribution is that arising from the permanent 
moment, and when expressing (43) in terms of usual spherical coordinates r, 0, (o we obtain 
after a brief calculation 



8072 I Brevik 

This is the main result of the analysis. Comparison with (26) shows that i t  is the total 
(inside plus outside) magnetic surface charge density associated with the permanent magnet 
that is responsible for the torque; the surface charge density (35) associated with the passive 
magnet does not play any role here. 

For a long horizontal magnet we get 

1 

Ke 
T = - n z ~ x B o = f i o m o x H ~  (45) 

which agrees with (2) and therefore agrees also with the outcome of the WS experiment, 
The applicability of (45) thus presupposes this particular geometrical form of the magnet. 
The simple proportionality between T and H, would not hold, for instance, if the magnet 
instead were a sphere. It would be of some interest to repeat the torque experiment under 
such circumstances. 

5. Energy considerations: spherical geometry 

As we have seen, it is the permanent magnet’s inside surface charge density 0; plus the 
outside charge density U; which is essential for the torque on the magnet. Both densities are 
according to (24) and (25) dependent on the value of f i r .  One may wonder what the physical 
process is which is responsible for the establishment of these charge densities. Imagine for 
concreteness that the magnet is initially surrounded by a liquid of permeability f i r ,  and that 
the container is thereafter slowly emptied. The final state corresponds to pe = I ,  implying 
that U; = MO. n, U; = 0. The surface charges thus gradually change when the container 
is emptied. Obviously there is a physical process of some sort going hcre. 

The purpose of the present section is to stress the following fact: the key process 
taking place during the change of liquid is the mechanical work exerted by the magnetic 
volume force density f = - f p o H Z V p c  in the inhomogeneous boundary region at the 
free surface of the liquid. We shall illustrate this point by analysing the total energy 
balance for the magnetic field. We shall henceforth assume spherical magnet geometry, 
with b = c = U .  This assumption simplifies the mathematics; yet the case is non-trivial 
enough to demonstrate the essential features of the physics involved. We consider the 
permanent magnet only (i.e. put Bo = 0). Let us summarize the basic formulae when the 
magnet is completely surrounded by the liquid: from (16H18) we get 

On the outside we get, using (19). since Fact) = i a 3 / r 3  for spherical geometry, 

1 
4nr3 H +  = - [~(TIz,,~,, . +)i - T I Z ~ ~ , ~ ]  (48) 

with 
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One merit of the spherical geometry case is thus that the external field has a dipole form 
for all r. From (24) and (25) we get the surface charge densities 

With reference to figure 2, we now imagine the (assumed infinite) container to be 
emptied in the following way. Initially, the liquid fills all the space around the magnet. 
Then the liquid is slowly pressed outwards, everywhere in the radial direction (gravity is 
ignored). There are thus three different field regions present, namely the magnet region 
r c a,  the annular vacuum region a c r c b, and the outer fluid region r > b. In the 
boundary region around r = b there is a radial volume force density which can be written 
as 

where 0 is the polar angle relative to the x axis. Upon integration across the boundary 
layer, from r = b- to r = b+, we obtain the radial surface force density 

F, = -4PoX.[P&(b+) + Hj(b+)] (52)  

(this expression could alternatively be derived by starting instead from Maxwell's stress 
tensor). In order to evaluate F,. and as the next step also the work exerted during the 
removal of the liquid, we thus first have to solve the field problem in the three regions 
mentioned above. 

- 
Ruid (14 

Figure 2. Spherical p e m e n t  magnet with ndius I = a. surrounded by a vacuum region 
(i i I c b and a magnetic liquid region I > b. 

Within the magnet we have, for an arbitrary value of b, Bin = Bi,ex,.where initially 
Bin = B- as given by (47)- and where finally B,. = 4poMo (when all liquid is removed). 
The corresponding magnetic field is 
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Outside the magnet it is most convenient to work in terms of the potentials; in the annular 
region, 

4 = (ar + $) cos 0 (54) 

and, in the outer region, 

@=II. r z  cos e. (55 )  

Here the four quantities Bin, a, p and y are to be determined from the boundary conditions 
at r = a  and r = b. A brief calculation yields 

In fact the surface force density, when expressed as in (52), requires knowledge about the 
coefficient y only. Insertion for H,(b+) and He(b+) yields 

(59) F, = - i : p ~ ~ r 2 ( 4 p r  I Y 2  cos' 0 +sin2 8).  

The work W exerted by this force during the removal of the liquid can now be found: 

We shall assume that p. z 1. The work is then always negative; this is so because the 
force density f = - i p o H 2  Vp, in the boundary layer around r = b is directed inwards. 

We shall now compare W with the change AV in magnetic energy, written as the sum 
of interior and exterior parts: 

AV = AUi,, +AV,,. (61) 

Consider first the interior part: B,. and Hi,, are given by (56) and (53). When the radius 
of the liquid increases from b to b + db, the interior magnetic energy density changes by 

Therefore we have 
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As regards the exterior shift in energy, we must integrate the magnetic energy density over 
the exterior region when the liquid is absent, and subtract the corresponding expression 
when the liquid is present. Using (48) and (49) we obtain 

It follows from (60)-(64) that 

AU = - W  (65) 

The negative work W due to the magnetic surface force when the liquid is pushed out 
from r = a to r = CO thus implies an increase in magnetic field energy which is exactly 
equal to AU. This is the physical process that takes place when the container in practice is 
emptied of one liquid and afterwards filled up by another liquid. In turn, this process has 
an influence also upon the magnetic surface charges. As equation (50) shows, U; is in the 
case of spherical geometry uninfluenced by the external liquid, whereas u,; is influenced. 
If the liquid is nonmagnetic, U$ vanishes. 

6. Conclusion and final remarks 

Let us summarize as follows 

(1) The torque T on an immersed spheroidal magnet is in  general given by (44). The 
permeability pLr of the liquid is thus of importance here. Note that r n o  is defined as in 
equation (1); i t  would be the magnetic moment if the magnet were placed in a vacuum. If 
the magnet is a long thin rod, the formula for T is as in ( 4 3 ,  showing the agreement with 
the outcome of the WS experiment (see equation (2)) .  

(2) As regards the Kennelly-Sommerfeld controversy, we see that neither the Kennelly 
prediction (6) nor the Sommerfeld prediction (7) is in general correct, although accidentally 
the Kennelly prediction is right if the magnet is a thin long rod; cf. (6) and (45). This 
coincidence is the reason why WS [ I ]  favoured the Kennelly prediction. In our opinion 
the Kennelly moment density J and moment j (see equations (3) and (4)) ought to be 
abandoned altogether since these symbols are unnecessary and tend to confuse the physical 
interpretation. 

(3) Our derivation of the torque in (44) is in agreement with the work of Lowes [2], 
his symbol me meaning the same as our m,,c,m. He actually argues that the Kennelly and 
the Sommerfeld approaches are equivalent, assuming that the proper interpretation is given. 
However, his argument, as shown in section 1, implies the relationship (1  1) which in our 
opinion is unfortunate since it conflicts with the natural relationship (5). Again, we wish 
to emphasize our main attitude. which is to avoid introducing unnecessary quantities in the 
theory. 

We ought perhaps to point out also the following difficulty encountered with Lowes' 
paper. In our treatment above, we put the relative 'reversible' permeability of the magnet 
equal to unity. Lowes develops the theory in a more generalized form, allowing for an 



arbitrary internal permeability, called p, .  Now equation (19) of [ 2 ]  implies, in our notation 
and with our orientation of the magnet axes, that 

(66) 
mo 

Pe + NIt(P1 - P e ) .  
m,rrrm = 

According to this equation, if the permanent magnet is situated in a vacuum, one should 
get mperm = mo/[l + N,(pi - I)]. This is a result which is in conflict with thc general 
property m,,,, = mo which has to hold for a magnet in vacuum (sec equation (I ) ) .  The 
generalization given by Lowes therefore appears questionable at this point. If &i = I ,  the 
problem disappears. 

(4) We found it convenient to work in terms of the scalar potential q5 produced by 
effective surface magnetic charges U M ;  see equation (13) for the magnetic moment. The 
physical process responsible for the establishment of the W,-dependent value of UM on thc 
surface of the permanent magnet (equation (26)) is the mechanical work exerted by the 
magnetic surface forces during emptying and filling of liquids in the container. This point 
was illustrated by a detailed calculation in section 5 .  

( 5 )  Becausc of the applied transverse field HO a passive magnetic moment mpus, is 
established. as shown in (37). This moment has no influence upon the torque on the magnet. 
It should be noted that when p. > 1 the direction of m,,,,, is opposite to that of Ho; (see 
also figure I ) .  We are here encountering a magnetic analogue of Archimedes’ principle. 

In fact the situation where nonmagnetic monosized spherical particles in the micrometre 
range are dispersed in  a fcrrofluid is of considerable interest in modern fundamental studies 
of collective phenomena. One obtains a system of interacting magnetic dipoles called 
‘magnetic holes’. The initial experimental discovery was made by Skjeltorp [7] (see also 
Skjeltorp and co-workers [8,9] and the thesis of Helgesen [IO]). As we have seen above, 
there cannot be any torque on a single magnetic hole in the static case. However, a bound 
pair of magnetic holes subjected to a rotating magnetic field will experience a magnetic 
torque. We shall not here go into further consideration of this point but mention finally 
that the attractive van der Waals force Fudw between two such holes of radius a, when the 
minimum distance d between the two spherical surfaces is much less than a, can be written 
as [ l l ]  

xz dx m ha 
32rrd2 

F,,,,w = -- 
where A is the quantity 

In this case the dispersion of the liquid is thus essential. 
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